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Abstract—The idea of homomorphic encryption is to make sure data confidentiality in messages, storage or in utilize by processes 

with methodssimilar to conventional cryptography, but with additionalabilities of computing over encrypted data, searching an 

encrypted data, etc. Homomorphism is a property by which a problem in one algebraic system can be converted to a problem in 

another algebraic system, be solved and the solution later can also be converted back successfully. Therefore, homomorphism 

composes secure delegation of computation to a third party feasible. Various conventional encryption schemes have either 

multiplicative or additive homomorphic property and are presently in use for personal applications. So far, a Fully Homomorphic 

Encryption (FHE) scheme which could perform any arbitrary computation over encrypted data appeared in 2009 as Gentry’s work. 

In this paper, we suggest a multi-cloud architecture of M distributed servers to repartition the data and to almostpermit achieving an 

FHE. 
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INTRODUCTION 

Cryptosystems provide methods to ensure data privacy 

and integrity. Suppose the data is constantly encrypts in the 

cloud, then control will not lost, and the concerns will detach. 

When an encryption algorithm does not allow arbitrary 

computation over encrypted data, the encrypted data have to 

be decrypt earlier than the computation, and the decrypted 

data will no longer under control. 

The vision of outsourcing an increasing amount of data 

storage and management to cloud services raises many new 

privacy concerns for individuals and businesses alike. The 

privacy concerns can be satisfactorily addressed if users 

encrypt the data they send to the cloud. If the encryption 

scheme is homomorphic, the cloud can still perform 

meaningful computations on the data, even though it is 

encrypted. 

In any organization to perform some operations if they want 

to download confidential data from the cloud to a trusted 

computer and then send the encrypted results backed to the 

cloud, Cloud computing is infeasible for such business 

organizations. Encrypted data has previously been impossible 

to operate on with out first decrypting them. Some encryption 

algorithms that permit arbitrary computation on encrypted data. 

For example, RSA is a multiplicatively homomorphic 

encryption algorithm where the decryption of the product of 

two encrypted data will be the product of the two plain data. On 

the other hand, RSA will not allow addition operation or the 

combination of additions And multiplications. Soon after, FHE 

has emerged [1] to carry out infinite chaining of algebraic 

operations in the cipherspace, which   means   that   a random 

number ofadditions and multiplications can be applied to 

encrypted operands. Unfortunately, all executions of FHE 

schemes proved that the performance is still slow for practical 

applications.In the last two years, solutions for fully 

homomorphic encryption schemes have been proposed and 

improved upon, but the problem faced with the efficiency . 

In this paper we discuss the following: The Homomorphic 

encryption and interrelated definitions, its applications are 

defined in section I. In section II, we talk about the 

Homomorphic Scheme. In section III, we present some 

examples of partially homomorphic cryptosystems. In section 

IV, we propose a protected multi-cloud architecture for 

processing encrypted data. SectionV deals withconclusion. 

1. HOMOMORPHICENCRYPTION 

Homomorphic encryption is a form of encryption that permit 

computations to be passed out on ciphertext, thus producing an 

encrypted result which, when decrypted, matches the result of 

operations carry out on the plaintext. Homomorphic encryption 

let the chaining together of different services without exposing 

the data to each of those services. For example, a chain of 

different services from different companies can calculate 1) the 

order 2) the customer transaction details  3) shipping, on a 

transaction without revealing the unencrypted data to each of 

those services.  Homomorphic encryption schemes 

are mouldable by design. This allows their requirement in cloud 

computing environment for ensuring the privacy of processed 

data. Along with that the homomorphic property of various 

cryptosystems can be used to create many other secure systems, 

for example secure voting systems,collision-resistant hash 

functions, private information retrieval schemes, and many more. 

https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Homomorphic
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Private_information_retrieval
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1.1  Applications of Homomorphic Encryption: 

Many approaches on homomorphic encryption had been 

recognized very early. There are many applications which 

required a scheme that could work out homomorphically on 

encrypted data. But with the growing interest and tendency 

towards cloud computing has opened various possible 

application areas for Homomorphic Encryption. According to 

authors in [2] these applications can be majorly classified based 

on whether we expect privacy of data or circuit privacy or both. 

The categories are:  

• Private Data, Public functions: like in Medical Applications. 

 •Private data, Private functions: like in Financial Applications. 

The above mentioned applications assume single data (content) 

owner who encrypts the data and stores it on an untrusted cloud.  

1.1.1 Electronic Voting : It is a unique case of allocation of 

calculation where one would like the election authorities to be 

able to calculate the votes and display the final results, but 

dislikes the idea that individual votes are first decrypted and 

afterwards tallied. In a voting system based on homomorphic 

encryption voters take turns incrementing an encrypted vote 

tally using a homomorphic operation. They are only allowed to 

increase the encrypted tally by 1 or by 0. Here 1 means 

indicating a vote for the candidate and 0 means indicating no 

vote for the candidate.  In elections where each voter votes for 

one of  N candidates, voters modify the encrypted tallies by 

adding an N-bit vector, where accurately one entry is 1 and the 

rest are all 0’s. They are not capable to alter the counters in any 

other way. Therefore, homomorphic encryption is one of the 

solution for creating a “secret ballot” system online, 

whereverthe votes will not reveal neither to anybody else except 

the voter. 

2. A. Definition of a Homomorphic EncryptionScheme 

A public-key encryption scheme S=(KeyGen, Encr, Decr) 

is homomorphic if for all N and all (pk,sk) output from 

KeyGen(k), it is possible to define groups T, E so that: 

2.1 The plaintext space T, and all ciphertexts output by 

Encrpk are elements ofE. 

For any t1 , t2 ∈T and e1 , e2 ∈E with t1 = Decrsk (e1 )  and 

t2 = Decrsk (e2 ) it holdsthat: 

Decrsk (e1 ∗e2 ) = t1 ∗t2 

Where the group operations ∗ are carried out in E and T, 

respectively. 

Similarly,ahomomorphiccryptosystemisaPKSwith the 

added property that there exists an efficient algorithm (Eval) to 

calculate an encryption of the sum or/and the product of two 

messages given the public key and the encryptions of the 

messages, but not the messagesthemselves. 

Additionally, a fully homomorphic scheme is capable to get 

output as a ciphertext that encrypts f (t1,...,tn), where f is any 

desired function, which of course must be calculated effectively. 

Informationaboutt1,...,tnorf(t1,...tn),oranyintermediate plaintext 

values will not leak. The inputs, outputs and intermediate values 

are always encrypted. Prior totake a closer look on fully 

homomorphic encryption schemes, we will need another 

importantnotionfrominformationtheory. 

2.2 Circuits 

Casually speaking, circuits are directed, acyclic graphs where 

nodes are called gates and edges are called wires. Depending on 

the nature of the circuit the input values are integers, boolean 

values, etc. and the matching gates are set operations and 

arithmetic operations or logic gates (AND, OR, NOR, NAND, 

...). In order to calculate a function f, we express f as a circuit and 

topologically arrange its gates into levels which will be executein 

sequence. 

Example. Assume the function f outputs the expression 

 

                Fig. 1.    Example for circuit representation 
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A·B+B·C·(B+C) on input (A,B,C). Then the following circuit 

represents the function f, with the logic gates AND and OR. 

Two important complexity measures for circuits are size and 

depth. The size of a circuit C is the number of its non-input 

gates. The depth of a circuit C is the length of its longest path, 

from an input gate to the output gate, of its underlying directed 

graph. This yields to another definition of fully homomorphic 

encryption [8]: 

 

ciphertexts Ψ = {c1 , ..., ct } where ci ← Encpk (mi ), outputs 

 

c← Evalpk (C, Ψ) 

 

under pk. 

To construct fully homomorphic encryption schemes we can 

also follow the second way. To know how this transformation 

works, we need the following definitions and corollaries. 

Definition : A homomorphic encryption scheme E is said to be 

correct for a family CE of circuits if for any pair (sk, pk) output 

by KeyGenE (λ) any circuit C ∈ CE , any plaintext m1,...,mt , and 

any ciphertexts Ψ = c1, ...,ct 

 

with ci ← Encpk (mi), it is the case that: 

If c ← EvalE (pk, C, Ψ),  then   DecE (sk, c) →C(m1,...,mt) 

Except with negligible probability over the random coinsin 

EvalE . 

Definition: A homomorphic encryption scheme E is compact, if 

there is a polynomial f so that, for every value of the security 

parameter λ, E’s decryption algorithm can be expressed as a 

circuit DE of size at most f (λ). 

A homomorphic encryption scheme E efficiently evaluates 

circuits in CE if E is compact and also correct for circuits in CE. 

Corollary: A homomorphic encryption scheme E is fully 

homomorphic if it compactly evaluates all circuits. 

This requirement is considered to be approximately too strong 

for practical purpose, therefore it uses a certain relaxation to 

comprise leveled schemes, which only estimate circuits of depth 

up to some d, and whose public key length may be poly(d). 

Definition: (leveled fully homomorphic). A family of 

homomorphic encryption schemes {E(d) : d ∈ Z+ } is said 

leveled fully homomorphic if, for all d ∈ Z+ , it all uses the same 

decryption circuit, E (d) compactly evaluates all circuits of 

depth at most d (that use some specified set of gates), and the 

computational complexity of E (d) ’s algorithms is polynomial 

in λ, d, and (in the case of EvalE ) the size of the circuit C. 

An encryption scheme which supports both addition and 

multiplication    (a    fully    homomorphic    scheme)   thereby 

Preserves the ring structure of the plaintext space and is therefore 

far more powerful. Using such a scheme makes it achievable to 

let an untrusted party do the computations without ever 

decrypting the data, and as a result preserving their 

confidentiality. 

An extensivelyvalued application of homomorphicencryption 

schemes is cloud computing. Currently, the need for cloud 

computing is growingrapidly, as the data we are dealing out and 

computing on is getting superior and superior every day. 

In order to be clear consider a small example Say, Seeta wants to 

store a sensitive file m ∈ {0, 1}n on Ram’s server. So she sends 

Ram Encr(m1), ..., Encr(mn). Assume that the file is a database 

(a catalog of people with specific data about them) and Seeta 

wants to find out howmany of them are 35 years old. Instead of 

retrieving the data from Ram, decrypting it and searching for the 

wanted information, she will ask Ram to do the computations, 

without him knowing what or who he is computingon. 

The answer from Ram comes in form of a ciphertext which 

only she can decrypt with her secret key. 

Theadvantageoffullyhomomorphicencryptionhaslongbeen 

acknowledged. The query for constructing such a scheme arises 

withinayearoftheimprovementofRSA[2]. 

During this period, the most excellent encryption system was the 

Boneh-Goh-Nissim cryptosystem [9] which supports estimation 

of an infinite number of addition operations but one 

multiplication at the most. 

 

Fig. 2.    Diagram of a homomorphic encryption scheme 

A general reason why a scheme cannot compute circuits of a 

certain depth Is that after a certain amount of computations too 

much error will build ups, which results the decryption to obtain 

a wrong value. The decryption usually is able to handle small 

amounts of error within a certain range and bootstrappable 
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encryption enables "refreshing" after some time. The basic idea of 

"refreshing" is to encrypt under a first key. Calculate until right 

before the error grows too large. Encrypt under a second key.  

Gentry's method can be broken down into three main steps: 

Step 1: creating an encryption scheme by means of ideal 

lattices that is somewhat homomorphic, which means it is 

limited to estimating low-degree polynomials over encrypted 

data. 

Step 2: "Squashing" the decryption circuit of the original 

somewhat homomorphic scheme to make it boot strappable. 

Step 3: Bootstrapping to some extent improved original 

scheme of step 2 to yield the fully homomorphic encryption 

scheme. This will be done with a "refreshing" procedure. 

The innovative idea of Gentry's method of creating a fully 

homomorphic scheme out of a somewhat homomorphic scheme 

is the method of squashing and boot-strapping. Mathematically 

the most appealing step is the first step. 

 

3. SOMEWHAT HOMOMORPHICSCHEME 

some computations over encrypted data. Gentry then 

demonstrated that if you can handle to design a SHE scheme that 

supports the evaluation of its own decryption algorithm (and a 

little more), then there is a common method to transform the 

SHE scheme into a FHE scheme. A SHE that can estimate its 

own decryption algorithm homomorphically is called 

bootstrappable and the procedure that changes a bootstrappable 

SHE scheme into a FHE scheme is called bootstrapping. 

Bootstrapping. First we discuss abou thow the currently-

known SHE schemes work. In general, the ciphertexts of all 

these schemes contain noise in it and unfortunately this noise 

gets better as more and more homomorphic operations are carry 

out. There may be some situations that the encryptions become 

useless due to much noise i.e., they do not decrypt correctly. This 

is the main drawback of SHE schemes and this is the reason that 

they can only carry out a restricted set of computations. 

Bootstrapping allows us to control this noise. 

The design is to take a ciphertext with a huge noise in it and 

an encryption of the secret key and to homomorphically decrypt 

the ciphertext. Note that this can only work if the SHE scheme 

has enough homomorphic ability to evaluate its own decryption 

algorithm which is why we need the SHE scheme to be boot 

strappable. This homomorphically computed decryption will 

effect in a new encryption of the message but without the noise 

or at least with less noise than before.  More concretely, say we 

have two ciphertexts: 

c1=Epk (m1) and c2=Epk (m2) 

with noise n1 and n2, respectively. We can multiply these 

encryptions using the homomorphic property of the SHE 

scheme to get an encryption: 

c3= Epk (m1 x m2) of m1 x m2 under key pk ,but C3 will now 

have noise n1xn2. The plan behind bootstrapping is to get rid of 

this noise as follows. First, we encrypt C3 and sk under pk .This 

results in two new ciphertexts 

C4=Epk(C3) =(Epk (m1 x m2)) and C5= Epk(sk) 

Given C4 and C5, we now homomorphically decrypt C4 

using C5. similarly, we compute the following operation over C4 

and C5: “decrypt c3= Epk (m1 x m2) using sk“. This is allowed 

since the scheme has enough homomorphicability to assess its 

ownd ecryption algorithm. 

Through this technique during a computation whenever the 

ciphertexts get too noisy, we can remove the main drawback of 

the SHE scheme and turn it into a FHE scheme. 

It turns out that constructing a bootstrappable SHE scheme is 

complex. To do this, Gentry build his scheme using 

complexmethods [1] so a lot of the recent work in FHE has 

attempted to figure out how to design simpler bootstrappable 

SHE schemes. 

3.1 PARTIALLY HOMOMORPHICCRYPTOSYSTEMS 

A. RSA-A Multiplicatively HomomorphicScheme 

In 1978, Rivest, Shamir, and Adleman published their public-

key cryptosystem that make use of elementary thoughts from 

number theory, in their paper "A Method for Obtaining Digital 

signatures and Public-Key Cryptosystems" [3]. It was one of the 

first homomorphic cryptosystem. The RSA cryptosystem is the 

most extensively used public-keycryptosystem. It may be used to 

give both confidentiality and digital signatures and its security is 

based on the intractability of the integer factorization problem. 
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                                    Fig. 3.    RSA Algorithm 

 

The encryption algorithm take a message m as inputfrom the 

plaintext space Zn  and calculates according  c iphertext. 

c = me mod n. This integer c ∈ Zn cannot be traced back to the 

original message without the knowledge of p and q, which will 

be proved later in this section. 

Decryption takes as input the ciphertext c and the secret key   

(d, n) and computes m = cd mod n. Since d is the inverse of e in 

Zn this is indeed the original message. 

The three steps (keygeneration, encryption and decryption) 

can be found in the following table. 

B. Paillier - An Additively HomomorphicScheme 

Pascal Paillier introduced his cryptosystem in 1999 and 

published paper "Public-Key Cryptosystems Based on 

Composite Degree Residuosity Classes" [11]. The proposed 

technique is based on composite residuosity classes, whose 

computation is supposed to be computationally difficult. It    is 

a probabilistic asymmetric algorithm for public key 

cryptography and inherits additive homomorphic properties. 

The encryption process takes a message m ∈Zn as input and 

randomly chooses an integerrin Z∗, this random number is used 

to satisfy the probabilistic algorithm’s n property, that one 

plaintext can have many ciphertexts. It is later revealed that this 

random variable does not delay the correct decryption, but has 

thee ffect of altering the corresponding ciphertext. 

The three steps (keygeneration, encryption and decryption) 

can be found in the following table: 

 

                               Fig. 4.    Paillier Algorithm 

 

4. OURARCHITECTURE 

The fully homomorphic encryption schemes [1] are very 

time consuming. Assuming the evaluation of one gate 

demanding a refresh, the run-time will be significant as well as 

the processing of security parameters. A suggestion of a nearly 

FHE scheme based architecture for allowing the  evaluation  of  

any  function  and producing encrypted data is illustrated in 

Figure 6. In our proposed architecture, the service provider 

repartitions the processing among the servers to fasten the 

evaluation process of any function. 

 

 

 

Fig. 5.   An architecture of distributed servers for processing encrypted data 
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In this proposed system, we supply a high leveled 

architectural scheme during the usage of several servers in the 

computation. This computational system will nearly allow 

attaining a FHE, and thus a large number of operations 

containing additions and multiplications can be performed. 

For instance, in Fig. 5, it is clearly shown that Client 1 sends 

a query and requests the results of a given function, Let us 

consider a function f(x)=ax²+bx+c. In this scenario the 

function elements are encrypted and divided into several 

portions depending on the number of operations (addition and 

Multiplication), and will be processed independently on N 

different servers, equivalent to the number of addition 

operations. At last the outcome or result is sent back to a 

Central Server in order to be 

forwardedtoClient1andthendecrypted. 

The advantage is that no longer chipertext after encryption 

unlike the classical method. The keys are simply handled and 

more security is maintained since it isnot possible to read 

relevant information in distributed systems. In the cloud the 

N servers consists of hypervisors hosting multiple virtual 

machines which supports developing the response time and 

augment the number of the involved computational entities in 

the distributed system. 

In this proposal, we evaluate the added value of the 

distributed systems in processing operations requested by 

clients. The scheme of homomorphic encryption is transmit 

within the servers and this can be practical and help 

developing the security of the cloud in terms of confidentiality 

of data and performance. 

An additional concern that must be measured in our architecture 

is the confidentiality of the processed data overt the is tributed 

systems, Now a days which is the main anxiety of most 

organizations when using third-party hosting. The approach 

concerning this is sue is the divide the stored data among multiple 

Cloud service providers to reduce the danger of data violaters and 

increase the parallel processing as well as the number of the 

servers involved in performing homomorphic encryption. 

Partitioning and outsourcing the data, applications onto different 

cloud infrastructures has the advantage of making them uncertain 

for third-parties and opponents, and thus this assist enhancing the 

privacy as well as the confidentiality. 

Like the stored encrypted data is repartitioned among a Multi-

Cloud Architecture belonging to different Cloud Service 

Providers mentioned in  Fig. 6, Client 1 can carry out operations 

on them and clearly get back the future results. The data is 

segmented during a Data Partitioning Algorithm (DPA) which 

permits partitioning, collecting and reconstructing the data. The 

main operation will chunked into subsets to be handled by the N 

Clouds/N Servers. The mixture of N Clouds and homomorphic 

encryption using N servers gives an improved security strategy 

which is a safe approach to avoid any potential data breaches even 

if the data have been previously encrypted. 

Selecting a trusted CSP needs a Service Level Agreement 

(SLA), agreement cooperation and risk estimation. In most cases 

it may be logical to believe that a CSP to be trustworthy and 

handling the clients’ sensitive data and applications in a 

responsible manner. 
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                                                                                     Fig. 6.   The proposed  architecture to secure data using  homomorphic encryption 

 
 

5.   CONLUSION 

By considering the proposals of Gentry proposed his 

construction regarding FHE, and made enormous attempt to 

make FHE more practical. While a lot of progress has been 

made, unfortunately, we are still on the way to show the FHE as 

practical. 

Majority of  FHE schemes are based on Gentry’s blueprint 

which includes of first constructing a SHE and then using 

Gentry’s bootstrapping technique to convert it into a FHE 

scheme. It converts out that bootstrapping is a major bottleneck 

and that SHE is actually reasonably well-ordered.  So,  if  we  

consider about practical applications, then it may be sensible to 

investigate what exactly we can do with SHE as an alternative. 

Distributed systems and multi-could architectures can 

convey lots of advantages to the application of homomorphic 

encryption and making it more realistic in the case of the 

security of data and applications. 

The future enhancement will focus on the implementation  

of our proposal is to accomplish security and performance tests 

in order to explain its practicality. 
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