

Website: ijetms.in Issue:2, Volume No.3, March-2019

3

Design of protected cloud computing by Homomorphic Encryption

Dr.J. Keziya Rani

Assistant Professor, Department of Computer Science & Technology, S.K University, Anantapuramu.

Abstract—The idea of homomorphic encryption is to make sure data confidentiality in messages, storage or in utilize by processes

with methodssimilar to conventional cryptography, but with additionalabilities of computing over encrypted data, searching an

encrypted data, etc. Homomorphism is a property by which a problem in one algebraic system can be converted to a problem in

another algebraic system, be solved and the solution later can also be converted back successfully. Therefore, homomorphism

composes secure delegation of computation to a third party feasible. Various conventional encryption schemes have either

multiplicative or additive homomorphic property and are presently in use for personal applications. So far, a Fully Homomorphic

Encryption (FHE) scheme which could perform any arbitrary computation over encrypted data appeared in 2009 as Gentry’s work.

In this paper, we suggest a multi-cloud architecture of M distributed servers to repartition the data and to almostpermit achieving an

FHE.

Keywords— confidentiality, multi-cloud; distributed System; Fully homomorphic encryption;

INTRODUCTION

Cryptosystems provide methods to ensure data privacy

and integrity. Suppose the data is constantly encrypts in the

cloud, then control will not lost, and the concerns will detach.

When an encryption algorithm does not allow arbitrary

computation over encrypted data, the encrypted data have to

be decrypt earlier than the computation, and the decrypted

data will no longer under control.

The vision of outsourcing an increasing amount of data

storage and management to cloud services raises many new

privacy concerns for individuals and businesses alike. The

privacy concerns can be satisfactorily addressed if users

encrypt the data they send to the cloud. If the encryption

scheme is homomorphic, the cloud can still perform

meaningful computations on the data, even though it is

encrypted.

In any organization to perform some operations if they want

to download confidential data from the cloud to a trusted

computer and then send the encrypted results backed to the

cloud, Cloud computing is infeasible for such business

organizations. Encrypted data has previously been impossible

to operate on with out first decrypting them. Some encryption

algorithms that permit arbitrary computation on encrypted data.

For example, RSA is a multiplicatively homomorphic

encryption algorithm where the decryption of the product of

two encrypted data will be the product of the two plain data. On

the other hand, RSA will not allow addition operation or the

combination of additions And multiplications. Soon after, FHE

has emerged [1] to carry out infinite chaining of algebraic

operations in the cipherspace, which means that a random

number ofadditions and multiplications can be applied to

encrypted operands. Unfortunately, all executions of FHE

schemes proved that the performance is still slow for practical

applications.In the last two years, solutions for fully

homomorphic encryption schemes have been proposed and

improved upon, but the problem faced with the efficiency .

In this paper we discuss the following: The Homomorphic

encryption and interrelated definitions, its applications are

defined in section I. In section II, we talk about the

Homomorphic Scheme. In section III, we present some

examples of partially homomorphic cryptosystems. In section

IV, we propose a protected multi-cloud architecture for

processing encrypted data. SectionV deals withconclusion.

1. HOMOMORPHICENCRYPTION

Homomorphic encryption is a form of encryption that permit

computations to be passed out on ciphertext, thus producing an

encrypted result which, when decrypted, matches the result of

operations carry out on the plaintext. Homomorphic encryption

let the chaining together of different services without exposing

the data to each of those services. For example, a chain of

different services from different companies can calculate 1) the

order 2) the customer transaction details 3) shipping, on a

transaction without revealing the unencrypted data to each of

those services. Homomorphic encryption schemes

are mouldable by design. This allows their requirement in cloud

computing environment for ensuring the privacy of processed

data. Along with that the homomorphic property of various

cryptosystems can be used to create many other secure systems,

for example secure voting systems,collision-resistant hash

functions, private information retrieval schemes, and many more.

https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Homomorphic
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Private_information_retrieval

Website: ijetms.in Issue:2, Volume No.3, March-2019

4

1.1 Applications of Homomorphic Encryption:

Many approaches on homomorphic encryption had been

recognized very early. There are many applications which

required a scheme that could work out homomorphically on

encrypted data. But with the growing interest and tendency

towards cloud computing has opened various possible

application areas for Homomorphic Encryption. According to

authors in [2] these applications can be majorly classified based

on whether we expect privacy of data or circuit privacy or both.

The categories are:

• Private Data, Public functions: like in Medical Applications.

 •Private data, Private functions: like in Financial Applications.

The above mentioned applications assume single data (content)

owner who encrypts the data and stores it on an untrusted cloud.

1.1.1 Electronic Voting : It is a unique case of allocation of

calculation where one would like the election authorities to be

able to calculate the votes and display the final results, but

dislikes the idea that individual votes are first decrypted and

afterwards tallied. In a voting system based on homomorphic

encryption voters take turns incrementing an encrypted vote

tally using a homomorphic operation. They are only allowed to

increase the encrypted tally by 1 or by 0. Here 1 means

indicating a vote for the candidate and 0 means indicating no

vote for the candidate. In elections where each voter votes for

one of N candidates, voters modify the encrypted tallies by

adding an N-bit vector, where accurately one entry is 1 and the

rest are all 0’s. They are not capable to alter the counters in any

other way. Therefore, homomorphic encryption is one of the

solution for creating a “secret ballot” system online,

whereverthe votes will not reveal neither to anybody else except

the voter.

2. A. Definition of a Homomorphic EncryptionScheme

A public-key encryption scheme S=(KeyGen, Encr, Decr)

is homomorphic if for all N and all (pk,sk) output from

KeyGen(k), it is possible to define groups T, E so that:

2.1 The plaintext space T, and all ciphertexts output by

Encrpk are elements ofE.

For any t1 , t2 ∈T and e1 , e2 ∈E with t1 = Decrsk (e1) and

t2 = Decrsk (e2) it holdsthat:

Decrsk (e1 ∗e2) = t1 ∗t2

Where the group operations ∗ are carried out in E and T,

respectively.

Similarly,ahomomorphiccryptosystemisaPKSwith the

added property that there exists an efficient algorithm (Eval) to

calculate an encryption of the sum or/and the product of two

messages given the public key and the encryptions of the

messages, but not the messagesthemselves.

Additionally, a fully homomorphic scheme is capable to get

output as a ciphertext that encrypts f (t1,...,tn), where f is any

desired function, which of course must be calculated effectively.

Informationaboutt1,...,tnorf(t1,...tn),oranyintermediate plaintext

values will not leak. The inputs, outputs and intermediate values

are always encrypted. Prior totake a closer look on fully

homomorphic encryption schemes, we will need another

importantnotionfrominformationtheory.

2.2 Circuits

Casually speaking, circuits are directed, acyclic graphs where

nodes are called gates and edges are called wires. Depending on

the nature of the circuit the input values are integers, boolean

values, etc. and the matching gates are set operations and

arithmetic operations or logic gates (AND, OR, NOR, NAND,

...). In order to calculate a function f, we express f as a circuit and

topologically arrange its gates into levels which will be executein

sequence.

Example. Assume the function f outputs the expression

 Fig. 1. Example for circuit representation

Website: ijetms.in Issue:2, Volume No.3, March-2019

5

A·B+B·C·(B+C) on input (A,B,C). Then the following circuit

represents the function f, with the logic gates AND and OR.

Two important complexity measures for circuits are size and

depth. The size of a circuit C is the number of its non-input

gates. The depth of a circuit C is the length of its longest path,

from an input gate to the output gate, of its underlying directed

graph. This yields to another definition of fully homomorphic

encryption [8]:

ciphertexts Ψ = {c1 , ..., ct } where ci ← Encpk (mi), outputs

c← Evalpk (C, Ψ)

under pk.

To construct fully homomorphic encryption schemes we can

also follow the second way. To know how this transformation

works, we need the following definitions and corollaries.

Definition : A homomorphic encryption scheme E is said to be

correct for a family CE of circuits if for any pair (sk, pk) output

by KeyGenE (λ) any circuit C ∈ CE , any plaintext m1,...,mt , and

any ciphertexts Ψ = c1, ...,ct

with ci ← Encpk (mi), it is the case that:

If c ← EvalE (pk, C, Ψ), then DecE (sk, c) →C(m1,...,mt)

Except with negligible probability over the random coinsin

EvalE .

Definition: A homomorphic encryption scheme E is compact, if

there is a polynomial f so that, for every value of the security

parameter λ, E’s decryption algorithm can be expressed as a

circuit DE of size at most f (λ).

A homomorphic encryption scheme E efficiently evaluates

circuits in CE if E is compact and also correct for circuits in CE.

Corollary: A homomorphic encryption scheme E is fully

homomorphic if it compactly evaluates all circuits.

This requirement is considered to be approximately too strong

for practical purpose, therefore it uses a certain relaxation to

comprise leveled schemes, which only estimate circuits of depth

up to some d, and whose public key length may be poly(d).

Definition: (leveled fully homomorphic). A family of

homomorphic encryption schemes {E(d) : d ∈ Z+ } is said

leveled fully homomorphic if, for all d ∈ Z+ , it all uses the same

decryption circuit, E (d) compactly evaluates all circuits of

depth at most d (that use some specified set of gates), and the

computational complexity of E (d) ’s algorithms is polynomial

in λ, d, and (in the case of EvalE) the size of the circuit C.

An encryption scheme which supports both addition and

multiplication (a fully homomorphic scheme) thereby

Preserves the ring structure of the plaintext space and is therefore

far more powerful. Using such a scheme makes it achievable to

let an untrusted party do the computations without ever

decrypting the data, and as a result preserving their

confidentiality.

An extensivelyvalued application of homomorphicencryption

schemes is cloud computing. Currently, the need for cloud

computing is growingrapidly, as the data we are dealing out and

computing on is getting superior and superior every day.

In order to be clear consider a small example Say, Seeta wants to

store a sensitive file m ∈ {0, 1}n on Ram’s server. So she sends

Ram Encr(m1), ..., Encr(mn). Assume that the file is a database

(a catalog of people with specific data about them) and Seeta

wants to find out howmany of them are 35 years old. Instead of

retrieving the data from Ram, decrypting it and searching for the

wanted information, she will ask Ram to do the computations,

without him knowing what or who he is computingon.

The answer from Ram comes in form of a ciphertext which

only she can decrypt with her secret key.

Theadvantageoffullyhomomorphicencryptionhaslongbeen

acknowledged. The query for constructing such a scheme arises

withinayearoftheimprovementofRSA[2].

During this period, the most excellent encryption system was the

Boneh-Goh-Nissim cryptosystem [9] which supports estimation

of an infinite number of addition operations but one

multiplication at the most.

Fig. 2. Diagram of a homomorphic encryption scheme

A general reason why a scheme cannot compute circuits of a

certain depth Is that after a certain amount of computations too

much error will build ups, which results the decryption to obtain

a wrong value. The decryption usually is able to handle small

amounts of error within a certain range and bootstrappable

Website: ijetms.in Issue:2, Volume No.3, March-2019

6

encryption enables "refreshing" after some time. The basic idea of

"refreshing" is to encrypt under a first key. Calculate until right

before the error grows too large. Encrypt under a second key.

Gentry's method can be broken down into three main steps:

Step 1: creating an encryption scheme by means of ideal

lattices that is somewhat homomorphic, which means it is

limited to estimating low-degree polynomials over encrypted

data.

Step 2: "Squashing" the decryption circuit of the original

somewhat homomorphic scheme to make it boot strappable.

Step 3: Bootstrapping to some extent improved original

scheme of step 2 to yield the fully homomorphic encryption

scheme. This will be done with a "refreshing" procedure.

The innovative idea of Gentry's method of creating a fully

homomorphic scheme out of a somewhat homomorphic scheme

is the method of squashing and boot-strapping. Mathematically

the most appealing step is the first step.

3. SOMEWHAT HOMOMORPHICSCHEME

some computations over encrypted data. Gentry then

demonstrated that if you can handle to design a SHE scheme that

supports the evaluation of its own decryption algorithm (and a

little more), then there is a common method to transform the

SHE scheme into a FHE scheme. A SHE that can estimate its

own decryption algorithm homomorphically is called

bootstrappable and the procedure that changes a bootstrappable

SHE scheme into a FHE scheme is called bootstrapping.

Bootstrapping. First we discuss abou thow the currently-

known SHE schemes work. In general, the ciphertexts of all

these schemes contain noise in it and unfortunately this noise

gets better as more and more homomorphic operations are carry

out. There may be some situations that the encryptions become

useless due to much noise i.e., they do not decrypt correctly. This

is the main drawback of SHE schemes and this is the reason that

they can only carry out a restricted set of computations.

Bootstrapping allows us to control this noise.

The design is to take a ciphertext with a huge noise in it and

an encryption of the secret key and to homomorphically decrypt

the ciphertext. Note that this can only work if the SHE scheme

has enough homomorphic ability to evaluate its own decryption

algorithm which is why we need the SHE scheme to be boot

strappable. This homomorphically computed decryption will

effect in a new encryption of the message but without the noise

or at least with less noise than before. More concretely, say we

have two ciphertexts:

c1=Epk (m1) and c2=Epk (m2)

with noise n1 and n2, respectively. We can multiply these

encryptions using the homomorphic property of the SHE

scheme to get an encryption:

c3= Epk (m1 x m2) of m1 x m2 under key pk ,but C3 will now

have noise n1xn2. The plan behind bootstrapping is to get rid of

this noise as follows. First, we encrypt C3 and sk under pk .This

results in two new ciphertexts

C4=Epk(C3) =(Epk (m1 x m2)) and C5= Epk(sk)

Given C4 and C5, we now homomorphically decrypt C4

using C5. similarly, we compute the following operation over C4

and C5: “decrypt c3= Epk (m1 x m2) using sk“. This is allowed

since the scheme has enough homomorphicability to assess its

ownd ecryption algorithm.

Through this technique during a computation whenever the

ciphertexts get too noisy, we can remove the main drawback of

the SHE scheme and turn it into a FHE scheme.

It turns out that constructing a bootstrappable SHE scheme is

complex. To do this, Gentry build his scheme using

complexmethods [1] so a lot of the recent work in FHE has

attempted to figure out how to design simpler bootstrappable

SHE schemes.

3.1 PARTIALLY HOMOMORPHICCRYPTOSYSTEMS

A. RSA-A Multiplicatively HomomorphicScheme

In 1978, Rivest, Shamir, and Adleman published their public-

key cryptosystem that make use of elementary thoughts from

number theory, in their paper "A Method for Obtaining Digital

signatures and Public-Key Cryptosystems" [3]. It was one of the

first homomorphic cryptosystem. The RSA cryptosystem is the

most extensively used public-keycryptosystem. It may be used to

give both confidentiality and digital signatures and its security is

based on the intractability of the integer factorization problem.

Website: ijetms.in Issue:2, Volume No.3, March-2019

7

 Fig. 3. RSA Algorithm

The encryption algorithm take a message m as inputfrom the

plaintext space Zn and calculates according c iphertext.

c = me mod n. This integer c ∈ Zn cannot be traced back to the

original message without the knowledge of p and q, which will

be proved later in this section.

Decryption takes as input the ciphertext c and the secret key

(d, n) and computes m = cd mod n. Since d is the inverse of e in

Zn this is indeed the original message.

The three steps (keygeneration, encryption and decryption)

can be found in the following table.

B. Paillier - An Additively HomomorphicScheme

Pascal Paillier introduced his cryptosystem in 1999 and

published paper "Public-Key Cryptosystems Based on

Composite Degree Residuosity Classes" [11]. The proposed

technique is based on composite residuosity classes, whose

computation is supposed to be computationally difficult. It is

a probabilistic asymmetric algorithm for public key

cryptography and inherits additive homomorphic properties.

The encryption process takes a message m ∈Zn as input and

randomly chooses an integerrin Z∗, this random number is used

to satisfy the probabilistic algorithm’s n property, that one

plaintext can have many ciphertexts. It is later revealed that this

random variable does not delay the correct decryption, but has

thee ffect of altering the corresponding ciphertext.

The three steps (keygeneration, encryption and decryption)

can be found in the following table:

 Fig. 4. Paillier Algorithm

4. OURARCHITECTURE

The fully homomorphic encryption schemes [1] are very

time consuming. Assuming the evaluation of one gate

demanding a refresh, the run-time will be significant as well as

the processing of security parameters. A suggestion of a nearly

FHE scheme based architecture for allowing the evaluation of

any function and producing encrypted data is illustrated in

Figure 6. In our proposed architecture, the service provider

repartitions the processing among the servers to fasten the

evaluation process of any function.

Fig. 5. An architecture of distributed servers for processing encrypted data

Website: ijetms.in Issue:2, Volume No.3, March-2019

8

In this proposed system, we supply a high leveled

architectural scheme during the usage of several servers in the

computation. This computational system will nearly allow

attaining a FHE, and thus a large number of operations

containing additions and multiplications can be performed.

For instance, in Fig. 5, it is clearly shown that Client 1 sends

a query and requests the results of a given function, Let us

consider a function f(x)=ax²+bx+c. In this scenario the

function elements are encrypted and divided into several

portions depending on the number of operations (addition and

Multiplication), and will be processed independently on N

different servers, equivalent to the number of addition

operations. At last the outcome or result is sent back to a

Central Server in order to be

forwardedtoClient1andthendecrypted.

The advantage is that no longer chipertext after encryption

unlike the classical method. The keys are simply handled and

more security is maintained since it isnot possible to read

relevant information in distributed systems. In the cloud the

N servers consists of hypervisors hosting multiple virtual

machines which supports developing the response time and

augment the number of the involved computational entities in

the distributed system.

In this proposal, we evaluate the added value of the

distributed systems in processing operations requested by

clients. The scheme of homomorphic encryption is transmit

within the servers and this can be practical and help

developing the security of the cloud in terms of confidentiality

of data and performance.

An additional concern that must be measured in our architecture

is the confidentiality of the processed data overt the is tributed

systems, Now a days which is the main anxiety of most

organizations when using third-party hosting. The approach

concerning this is sue is the divide the stored data among multiple

Cloud service providers to reduce the danger of data violaters and

increase the parallel processing as well as the number of the

servers involved in performing homomorphic encryption.

Partitioning and outsourcing the data, applications onto different

cloud infrastructures has the advantage of making them uncertain

for third-parties and opponents, and thus this assist enhancing the

privacy as well as the confidentiality.

Like the stored encrypted data is repartitioned among a Multi-

Cloud Architecture belonging to different Cloud Service

Providers mentioned in Fig. 6, Client 1 can carry out operations

on them and clearly get back the future results. The data is

segmented during a Data Partitioning Algorithm (DPA) which

permits partitioning, collecting and reconstructing the data. The

main operation will chunked into subsets to be handled by the N

Clouds/N Servers. The mixture of N Clouds and homomorphic

encryption using N servers gives an improved security strategy

which is a safe approach to avoid any potential data breaches even

if the data have been previously encrypted.

Selecting a trusted CSP needs a Service Level Agreement

(SLA), agreement cooperation and risk estimation. In most cases

it may be logical to believe that a CSP to be trustworthy and

handling the clients’ sensitive data and applications in a

responsible manner.

Website: ijetms.in Issue:2, Volume No.3, March-2019

9

 Fig. 6. The proposed architecture to secure data using homomorphic encryption

5. CONLUSION

By considering the proposals of Gentry proposed his

construction regarding FHE, and made enormous attempt to

make FHE more practical. While a lot of progress has been

made, unfortunately, we are still on the way to show the FHE as

practical.

Majority of FHE schemes are based on Gentry’s blueprint

which includes of first constructing a SHE and then using

Gentry’s bootstrapping technique to convert it into a FHE

scheme. It converts out that bootstrapping is a major bottleneck

and that SHE is actually reasonably well-ordered. So, if we

consider about practical applications, then it may be sensible to

investigate what exactly we can do with SHE as an alternative.

Distributed systems and multi-could architectures can

convey lots of advantages to the application of homomorphic

encryption and making it more realistic in the case of the

security of data and applications.

The future enhancement will focus on the implementation

of our proposal is to accomplish security and performance tests

in order to explain its practicality.

 ACKNOLEDGEMENTS

 We sincerely thank Mr. Kamal Benzekki , Mr.Abdeslam

El Fergougui and Mr.Abdelbaki El Belrhiti El Alaoui whose

paper “A Secure Cloud Computing Architecture Using

Homomorphic Encryption” has been a source of inspiration.

REFERENCES:

[1] C. Gentry, “A fully homomorphic encryption scheme,”
Doctoral dissertation, Stanford University, 2009.

[2] R. Rivest, L. Adleman, and M. Dertouzos, “On data banks
and privacy homomorphisms,” In Foundations of Secure
Computation, pages 169- 180, 1978.

Website: ijetms.in Issue:2, Volume No.3, March-2019

10

K.Lauter, M.Naehrig and V.Vaikunthnathan, “Can
homomorphic encryption be practical?”, Proc of 3rd ACM
workshop on Cloud Computing Security Workshop , pp
113- 124, 2011.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key
cryptosystems,” Communications of the ACM,
21(2):120-126,1978.

[4] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” In 18th Annual Eurocrypt
Conference (EUROCRYPT'99) Prague, Czech Republic
, volume 1592, 1999.

[5] J. Bringe and al., “An Application of the Goldwasser-
Micali Cryptosystem to Biometric Authentication”,
Springer-Verlag, 2007.

[6] R. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public key
cryptosystems,” Communications of the ACM,
21(2):120-126, 1978. Computer Science, pages 223-
238.
Springer, 1999.

[7] T. ElGamal, “A public key cryptosystem and a signature
sche based on discrete logarithms,” IEEE Transactions on
Information Theory, 469- 472, 1985.

[8] C. Gentry, “Fully homomorphic encryption using ideal
lattices,” InSTOC, Vol. 9, pp. 169-178, 2009.

[9] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-dnf
formulas on ciphertexts,” In Proceedings of Theory of
Cryptography (TCC) '05, LNCS 3378, pages 325-341,
2005.

[10] O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key
cryptosystems from lattice reduction problems,” In
Proceedings of the 17th Annual International Cryptology
Conference on Advances in Cryptology, pages 112-131.
Springer-Verlag, 1997.

[11] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” Advances in Cryptology
Eurocrypt, 1592:223-238, 1999.

[12] S. Goluch, “The development of homomorphic
cryptography: From RSA to Gentry’s privacy
homomorphism” Doctoral dissertation, Vienna university
of Technology, 2010.

